Pollution and Fatal Traffic Accidents in California from 1999-2019

By Mark Braun

Air pollution \rightarrow Crime

Air pollution \rightarrow Productivity

Air pollution \rightarrow Mortality

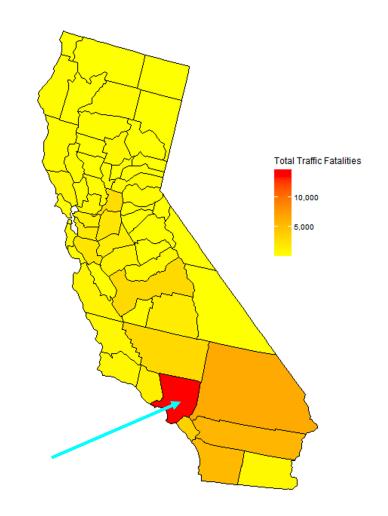
Air pollution → Cognition

Cognition → **Driving** Ability

Air pollution → Traffic Accidents

Air pollution → Traffic Accidents

To what extent does air pollution affect fatal car accidents in California from 1999-2019?


Fatal traffic accidents cost Californians \$5.83 billion in 2018.

- Air pollution
 - Environmental Protection Agency (EPA)
- Fatal traffic accidents
 - National Highway Traffic and Safety Administration (NHTSA)
- Weather
 - NASA's Goddard Earth Sciences Data and Information Services Center (GES DISC)

Table 1: Summary Statistics

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
Surface Eastward Wind (m s ⁻¹)	444,860	0.511	3.363	-14.875	-1.902	3.035	18.180
925 hPa Air Temp (K)	444,860	286.171	8.292	253.652	280.125	292.465	312.222
Surface Air Temp (K)	234,202	285.398	6.950	254.177	280.980	289.916	310.456
Traffic Fatalities	392,240	0.194	0.587	0.000	0.000	0.000	17.000
PM _{2.5}	256,996	10.480	9.740	-6.000	5.100	12.622	498.000
PM_{10}	174,016	25.824	56.454	-17.500	12.472	31.000	10,020.000
SO_2	110,308	2.514	3.885	-0.800	0.600	3.000	192.000
CO	215,125	0.605	0.499	-0.300	0.300	0.720	12.800
O_3	369,628	0.041	0.015	0.000	0.031	0.050	0.125
Pb	15,126	0.047	0.208	0.000	0.004	0.024	14.360
NO_2	255,524	22.626	13.197	-4.400	12.500	30.500	177.500
AQI	391,260	58.358	94.759	0.000	35.000	67.000	20,646.000
Inversion (K)	234,202	1.088	3.669	-5.839	-1.543	2.879	20.493
Cloud Coverage	444,860	0.369	0.319	0.000	0.050	0.642	0.998
Snowfall $(kg m^{-2}s^{-1})$	444,860	0.00000	0.00002	0	0	0	0
Rainfall $(mm h^{-1})$	414,816	1.583	6.887	0.000	0.000	0.137	232.740

Regression Analysis

- By county by day
- PM_{2.5} as independent variable
- Fatal traffic accidents as dependent variable

Table 3: OLS Regressions by County by Day

Dependent Variable:	Traffic Fatalities				
Model:	(1)	(2)	(3)	(4)	
Variables					
(Intercept)	0.1706***				
* * * * * * * * * * * * * * * * * * * *	(0.0019)				
$PM_{2.5}$	0.0063***	-2.74×10^{-5}	7.07×10^{-5}	-0.0003	
	(0.0001)	(0.0001)	(0.0002)	(0.0008)	
Surface Air Temperature (K)			0.0008	0.0007	
			(0.0005)	(0.0021)	
Precipitation $(mm \ h^{-1})$			3.75×10^{-5}	-0.0003	
			(0.0003)	(0.0009)	
Snowfall $(kg m^{-2}s^{-1})$			-51.47	-648.5**	
			(92.12)	(264.4)	
Cloud Coverage			-0.0152*	-0.0159	
			(0.0077)	(0.0176)	
AQI				-0.0004	
				(0.0004)	
SO_2				0.0043	
				(0.0027)	
CO				0.0284	
				(0.0308)	
O_3				2.965**	
				(1.033)	
NO_2				0.0004	
				(0.0009)	
Fixed-effects					
County	No	Yes	Yes	Yes	
Date	No	Yes	Yes	Yes	
Fit statistics					
Observations	256,996	256,996	131,645	40,297	
R^2	0.00876	0.32886	0.33061	0.37467	
Within R ²		1.34×10^{-7}	4.14×10^{-5}	0.00115	
Signif. Codes: ***: 0.01, **:	0.05, *: 0.1				

Issue with OLS Regression

- Reverse causality
 - Fatal traffic accidents may cause pollution

Instrumental Variables

- Sager (2019)
- Air temperature inversions
 - Hot air above cold air, contrary to usual
- Eastward Wind
- Exclusion restriction

Table 4: 2SLS First Stage by County by Day

Dependent Variable:	$\mathrm{PM}_{2.5}$				
Model:	(6)	(7)	(8)	(9)	
Variables					
(Intercept)	10.53***				
	(0.0281)				
Surface Eastward Wind $(m \ s^{-1})$	-0.4402***	-0.2015***	-0.1214***	-0.0213	
	(0.0080)	(0.0157)	(0.0157)	(0.0174)	
Inversion (K)	0.2802***	0.1272***	0.3969***	0.1993***	
	(0.0070)	(0.0164)	(0.0208)	(0.0203)	
Surface Air Temperature (K)			0.3952***	-0.0829***	
			(0.0189)	(0.0266)	
Precipitation $(mm \ h^{-1})$			-0.0371***	-0.0147***	
			(0.0054)	(0.0056)	
Snowfall $(kg \ m^{-2}s^{-1})$			9,054.1***	-14,197.6**	
			(1,358.0)	(1,882.5)	
Cloud Coverage			0.1166	0.1854	
			(0.3118)	(0.3070)	
AQI				0.1663***	
				(0.0067)	
SO_2				-0.0528***	
				(0.0163)	
CO				2.841***	
				(0.3043)	
O_3				-231.6***	
				(9.570)	
NO_2				0.0631***	
				(0.0079)	
Fixed-effects					
Date	No	Yes	Yes	Yes	
County	No	Yes	Yes	Yes	
Fit statistics					
Observations	135,469	135,469	131,645	40,297	
R^2	0.02821	0.44855	0.44807	0.71913	
Within R ²		0.00375	0.01581	0.42955	
Signif. Codes: ***: 0.01, **: 0.0)5, *: 0.1				

F-test on Eastward Wind and Inversion

138.245, confirming that the instruments significantly affect $PM_{2.5}$

Table 5: 2SLS Second Stage by County by Day

Dependent Variable:	Traffic Fatalities					
Model:	(10)	(11)	(12)	(13)		
Variables						
(Intercept)	0.2688***					
_	(0.0116)					
$PM_{2.5}$	-0.0032***	-0.0017	0.0004	0.0063		
	(0.0011)	(0.0028)	(0.0023)	(0.0090)		
Surface Air Temperature (K)			0.0008	0.0021		
			(0.0007)	(0.0029)		
Precipitation $(mm \ h^{-1})$			5.14×10^{-5}	-0.0002		
			(0.0003)	(0.0009)		
Snowfall $(kg m^{-2}s^{-1})$			-54.23	-561.6**		
			(92.65)	(259.9)		
Cloud Coverage			-0.0150**	-0.0151		
			(0.0070)	(0.0176)		
AQI				-0.0016		
				(0.0015)		
SO_2				0.0046		
				(0.0028)		
CO				0.0094		
				(0.0432)		
O_3				4.520*		
_				(2.533)		
NO_2				-2.43×10^{-5}		
				(0.0009)		
Fixed-effects						
County	No	Yes	Yes	Yes		
Date	No	Yes	Yes	Yes		
Fit statistics						
Observations	135,469	135,469	131,645	40,297		
\mathbb{R}^2	-0.01154	0.33172	0.33060	0.37372		
Within R ²		-0.00065	$2.5 imes 10^{-5}$	-0.00037		
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1						

Potential Biases

- Omitted variable bias: traffic volume
 - Sager finds that PM_{2.5} does not affect volume
- Omitted data points
 - By county by week analysis

F-test on Eastward Wind and Inversion Weekly Analysis

132.092, confirming that the instruments significantly affect $PM_{2.5}$

Table 6: 2SLS Second Stage by County by Week

Dependent Variable:	Traffic Fatalities				
Model:	(14)	(15)	(16)	(17)	
Variables					
(Intercept)	2.173***				
	(0.1122)				
$PM_{2.5}$	-0.0811***	0.0096**	0.0043	0.0018	
	(0.0114)	(0.0047)	(0.0060)	(0.0420)	
Surface Air Temperature (K)			0.0104***	0.0145*	
			(0.0030)	(0.0077)	
Precipitation $(mm \ h^{-1})$			0.0013	0.0093	
			(0.0014)	(0.0054)	
Snowfall $(kg \ m^{-2}s^{-1})$			1,951.9***	-3,132.0	
			(638.3)	(2,082.3)	
Cloud Coverage			-0.1081**	-0.0966	
			(0.0486)	(0.1251)	
AQI				-0.0033	
				(0.0095)	
SO_2				0.0314**	
				(0.0140)	
CO				0.0786	
				(0.2017)	
O_3				8.765	
				(13.26)	
NO_2				0.0125**	
				(0.0045)	
Fixed-effects					
County	No	Yes	Yes	Yes	
Week	No	Yes	Yes	Yes	
Year	No	Yes	Yes	Yes	
Fit statistics					
Observations	53,155	53,155	50,034	13,902	
\mathbb{R}^2	-0.16191	0.72407	0.72665	0.74406	
Within R ²		-0.00243	0.00030	0.00460	
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1					

Discussion and Conclusion

- "To what extent does air pollution affect fatal car accidents in California from 1999-2019?"
- Raises questions
- Further research