Exploring Climate Change Adaptation Pathways for the Guna Yala in San Blas, Panama

Environmental Economics and Policy Honors Thesis Rausser College of Natural Resources

Supervised by Professor Sofia Villas-Boas

Ariana Jessa

Background

Literature Review of Modeling Approaches

Instrumental Variable Approach

- Utilizing agricultural yield to estimate climate migration
- Empirically robust
- Requires a high level of detailed data

Gravity Model

- Models mobility as dependent on population capacity and distance
- Does not offer reliable enough projections for planning
- Requires only population data

Radiation Model

- Couples mobility modeling and inundation due to SLR
- Does not offer reliable enough projections for planning
- Requires only population data

Methodology

Sea Level Rise Modeling

- RCP 2.6
 - 0.98 ft by 2050
 - 1.55 ft by 2100
 - 3.19 ft by 2300
- RCP 8.5
 - 0.98 ft by 2050
 - 4.41 ft by 2100
 - 11.9 ft by 2300
- Storm Surge
 - Average of 15 ft above GMSL
 - Expected to become annual events by 2100

Suitability Analysis for Relocation

• Opportunities

- Available electricity
- Proximity to San Blas
- Near to major roads
- Highly arable land
- Near to healthcare facilities
- Constraints
 - No water availability
 - No toilet availability
 - Near occupied homes
 - Not in National Parks
 - Not in likely flood zones
 - Not in likely storm surge

Sea Level Rise Model

2050 RCP 8.5 Prediction

Legend RCP 8.5 2050 Hillshade Value Low : 0

2100 RCP 8.5 Prediction

Legend RCP 8.5 2100 Hillshade Value High: 254 Low: 0 Cat o RCP 8.5 2100 High: 254 High: 254

2300 RCP 8.5 Prediction

Impact of Storm Surges

- Storm surges are an example of an extreme weather event that is expected to be annually occurring by 2100
 - Flooding to this degree will devastate the infrastructure of all occupied islands

Flooding Animation

Case Study: Gardi Sugdub

Suitability Analysis

	ID_DISTRIT	PROVINCIA	DISTRITO
	02	Panamá	Balboa
Ľ	05	Panamá	Chepo
	06	Panamá	Chimán
	08	Panamá	Panamá
	10	Panamá	San Miguelto

Key Findings and Discussion

Sea Level Rise Modeling

- The Gardi Sugdub
 - will likely be forced to migrate by 2050 in both RCP scenarios
 - Eastern infrastructure is at the most risk
- Under both RCP's
 - The majority of islands are at risk by 2050
 - By 2300, the mainland will be impacted
 - Storm surges will flood all 400+ islands

Suitability Analysis for Relocation

- Four districts offer the highest suitability based off the 11 socio-ecological factors:
 - Panamá
 - Chepo
 - Chimán
 - San Miguelito