Bioplastic(Petrochemical Plastic Substitutes): Price Burden and Path to Cost Reduction

Yanling Liu Faculty Mentor: Professor Brian Wright Department: Agricultural & Resource Economics

.

Introduction

Definitions

- Bioplastic: Biodegradable plastics are mostly(not all) made from renewable resources.
- Bioplastic Products: Products made primarily from bioplastics that are certified biodegradable or compostable: US Standard ASTM D6400, European Norm EN 13432
- Identified **Problem**: 1% of 335 million tons of plastics produced annually are bioplastics, why is bioplastic market still small?
- **Questions** to be answered:
 - 1. Is the price of bioplastics a disadvantage to bioplastics when competing with traditional plastics in the market?
 - 2. What price reducing technology or innovations can be or is being adopted to reduce the cost of bioplastics?
 - 3. What indirect methods could help mitigate the cost reduction burden of bioplastics?

Identif

Identify the price burden: Bioplastic Products

• Price Comparison

- BioBag vs. Conventional Plastic Products
 - Kitchen Waste Bag: Glad, Hefty®, Husky
 - Gallon Zipper Food Storage Bag: Ziploc, Glad, Great Value
 - Plastic Shopping Bag: Barnes Paper Company, SSWBasics, Universal
 - Produce Bag: SafePro 1220P, SafePro 1520
 - On average 2.9 times higher
- Interview Evidence
 - BioBag
 - Main component Mater-Bi[™](starches, cellulose, vegetable oils and their combinations), higher raw material cost than petrochemical plastic
 - As demand increased, price has reduced, but "will never be as inexpensive as PE"
 - Distinctive Action #INVISIBLE BAG
 - HK company, biodegradable/compostable/water-soluble bag
 - Polyvinyl Alcohol(PVA), starch, glycerin, water, eco-friendly ink
 - 2-3 times price difference exist, worse in DA's case as economies of scale is hard to achieve
 - Demand for PE drives down price, but not for PVA

Identify the price burden: Bioplastic Materials

Abb	Full Name	Company(if applicable)	Price(\$/lb)	Average Price(\$/lb)	Year	Price(\$/to n)	Price in Country	Biodegra dable	Fossil Source	Natural Source
	Polyhydroxyal									
PHA	kanoates	Metabolix	2.36-2.52	2.44	2014		US	1	0	1
Mater-Bi		Novamont	1.86-2.8	2.33	2014		EU	1	0	1
PS	Polystyrene		1.04-1.06	1.05	7/2014		US	0	1	0
PE	Polyethylene		0.98-1	0.99	7/2014	952.55	US	0	1	0
PLA	Polylactic acid	NatureWorks	0.82-1.1	0.96	2014		US	1	0	1
	Polyvinyl									
PVA	Alcohol		0.938	0.938	2020	1875.15	US	1	1	0
PVC	Polyvinyl Chloride		0.78-0.8	0.79	7/2014		US	0	1	0
PP	Polypropylene		0.73-0.75	0.74	7/2014		US	0	1	0
PET	Polyethylene Terephthalate		0.5525	0.5525	11/2016		US	0	1	0

Cost Reducing Technologies: Polylactide Acid(PLA)

- Production of Polylactic Acid(PLA):
 - Starch(Corn, Sugar, etc.) goes through hydrolysis to obtain individual glucose molecules
 - Glucose molecules are fermented with bacteria or fungi to form lactic acid monomers
 - Lactic acid monomers join chemically through condensation, water molecules are lost to form PLA
- Application of PLA:
 - Packaging: plastic bags, plastic containers, food wraps, etc.
 - Automotive & Healthcare Industry
- To Reduce Price of PLA:
 - Sisal Fibers (Wu 2011):
 - blend with PLA to form cheaper composites
 - Abundant natural fiber resource
 - Improve mechanical properties: lower melting point, higher tensile strength, & biodegradation rate

Cost Reducing Technologies: Polyhydroxyalkanoate(PHA)

- Production of Polyhydroxyalkanoate (PHA):
 - Bacteria used for production of PHA(alcaligenes) come from sugar or lipids.
 - Bacterias are grown with nutrients such as carbon, nitrogen, sulfur, NaCl, etc.
 - Undergo bacterial fermentation with unbalanced conditions, to produce PHA for storage of energy
 - PHA is extracted and purified
- Application of PHA:
 - Commonly used plastic products: Utensils, shopping bags, toys, trashbags, etc.
 - Healthcare Industry: drug carriers, biodegradable implants, anticancer agents, etc.

• To Reduce Price of PHA:

- Cheaper carbon substrate to reduce cost of biosynthesis
 - Plant oil: soybean oil, palm oil, corn oil
 - Waste streams from slaughtering cattle, organic fraction of municipal solid waste, sludge
- Extraction:
 - Non-ionic surfactants as pre-treatment to extraction of PHA
 - Comparable yield as Chlorinated solvents(Chloroform)

Cost Reducing Innovations: UBQ[™] & AirCarbon[™]

	Innovative Company 1: UBQ	Innovative Company 2: Newlight Technologies
Material Name	UBQ™	AirCarbon™
What is it?	A biodegradable plastic replacement	PHA-based thermoplastic
How is it made?	Residual Municipal Solid Waste is reduced to its basic components, then reconstituted to form the composite material UBQ™	Airstream containing greenhouse gas goes through Microorganism-based biocatalyst for separation of carbon and oxygen, molecules are re-assembled into a long chain thermoplastic
How does it reduce cost?	Patented modular conversion system can convert any RMSW to UBQ™, ever-growing and cheaper source, "won't pay a penny more than their existing resin"	Microorganism-based biocatalyst provides 9X higher polymer conversion yield than previous conversion technology for methane to PHA
Applications	McDonald - Trays Central Virginia Waste Management Authority - Recycling Bins	Restore Foodware - Cutlery, straws Covalent Fashion - eyewear, wallets, handbags

Indirectly Mitigate Cost Burden

Target Customers' WTP

۲

- Kainz (2016), Germany: label "Renewable Resources" increases WTP, label > text
- Kaewphan et al. (2013), Thailand: 60% participants willing to pay more for bioplastic bags
- Ellison et al. (2015): consumers are willing to pay \$0.67-1.12 more for bioplastic pots
- Klein et al. (2020), Germany: previous experience with bioplastics, higher Green Consumer Values increase consumers' preference for bio-based apparel
- Education & Collaboration
 - Klein et al. (2020), Germany: Only 12% of participants had experience with bioplastics
 - Iles et al. (2012): Sustainable Business Model for Chemical Companies
 - Reducing cost and increasing yields are not enough to secure success of bioplastics
 - Successful Example: DuPont(US)
 - Communication with customers: identify potential applications, customer needs
 - Create device for downstream manufactures to show their customers the material's ecological values(eco-label)
 - What's more to do:
 - Engage societal groups to define sustainability
 - Monitor bioplastics' improvement & communicate progress to societies

Conclusion

- Price gap exists for bioplastic materials and products, economics of scale assist conventional plastics in competitiveness of price
- Cost Reduction for bioplastics
 - Direct Solutions:
 - Cost Reducing Technologies
 - Innovations for cheaper plastic replacement
 - Indirect Solutions:
 - Target Consumers' WTP for environmentally friendly products
 - Education & Collaboration with customers

Thank you for listening!